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We present an exact mathematical transformation which converts a wide class of advection-diffusion equa-
tions into a form allowing simple and direct spatial discretization in all dimensions, and thus the construction
of accurate and more efficient numerical algorithms. These discretized forms can also be viewed as master
equations which provide an alternative mesoscopic interpretation of advection-diffusion processes in terms of
diffusion with spatially varying hopping rates.
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I. INTRODUCTION

Advection-diffusion equations(ADEs) describe a broad
class of processes in the natural sciences. As their name im-
plies, they provide a continuum(macroscopic) representation
of systems whose underlying dynamics combines Brownian
motion (diffusion) with some form of deterministic drift(ad-
vection). In this paper we shall consider ADEs of the general
form

]tr = ¹ ·D ¹ r − ¹ · rv. s1d

The field r typically describes the number density of “par-
ticles” which, depending on the application, can range from
electrons in a plasma, to chemical molecules advected in
solution, to colloidal particles, to biological cells moving
along chemical gradients. In principle the diffusion coeffi-
cient Dsx ,td and the velocity fieldvsx ,td can depend on the
density field r. An idea of the ubiquity of ADEs can be
gauged from their diverse applications to traditional physics,
soft matter systems, and biology. A small subset of examples
are magnetic fusion plasmas[1], cosmic ray streaming[2,3],
electrons in weakly ionized gases[4], microemulsions under
shear flow[5], chemical kinetics in driven systems[6,7],
hydrodynamics and chemotaxis of bacterial colonies[8,9],
phase field dynamics in directional solidification[10], and a
wide array of tracer diffusion problems(for example[11]).

It is generally not possible to analytically solve ADEs,
especially since they often appear within sets of non-linear
coupled equations. For this reason, great emphasis has been
placed on numerical integration methods, typically based on
finite differences. It has been found that the advection term,
despite its apparent simplicity, is extremely troublesome to
handle[12]. There are two major challenges:stability, which
can be improved using a range of implicit methods, andac-
curacy, which is a delicate issue, requiring the “best pos-
sible” form of spatial discretization. Regarding the issue of
stability, many schemes are in use, such as the Crank-
Nicholson/ADI and fractional step methods[12,13], and the
Lax-Wendroff method[14]. The issue of accuracy has re-

ceived somewhat less attention with two spatial discretiza-
tion schemes(and their immediate variants) commonly in
use: these are the simple Taylor expansion[1,15] and the
“upwind” scheme[16,17]. One of the main results of this
paper is the derivation of a new discretization scheme which
is physically appealing, simple to apply in all dimensions,
and more accurate than those currently in use.

II. A SIMPLE EXAMPLE

To begin, let us present the key idea in the context of a
simple ADE, namely, a one-dimensional system with a ve-
locity function proportional to the spatial derivative of a sca-
lar potentialfsx,td. Thus, we consider

]tr = D0]x
2r − a]xsr]xfd, s2d

whereD0 anda are constants.
Most numerical algorithms designed to integrate an equa-

tion such as(2) treat the diffusion and advection terms sepa-
rately [1,12,17]. The difficulties arise in finding a discretiza-
tion for the latter term. In doing so, two fundamental
properties of the equation must be exactly maintained. These
are the non-negativity ofr and its spatial conservation:

E dxrsx,td = const. s3d

As an illustration, let us write down a common spatial
discretization using simple Taylor expansion, which is used
both for explicit Euler schemes[18], and as the basis for
more advanced implicit algorithms[12,15,16]. We replace
the continuous functionrsx,td by a set of functionshristdj
defined on a regular grid with lattice spacingh. The equation
of motion forri is written using centered spatial derivatives:

dri

dt
=

D0

h2 sri+1 + ri−1 − 2rid −
a

4h2fri+1sfi+2 − fid

− ri−1sfi − fi−2dg. s4d

It is noteworthy that this simple scheme requires knowledge
of the scalar fieldf at next-nearest neighbor grid points
rather than neighboring grid points. For future reference we
rewrite this discrete equation in the following manner:
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dri

dt
=

1

h2Hri+1FD0 −
a

4
sfi+2 − fidG

+ ri−1FD0 +
a

4
sfi − fi−2dG − rif2D0gJ , s5d

which we shall hereafter refer to as the “linear centered dis-
cretization”(LCD) (and which resembles the backward Euler
scheme used for simple advection problems[12]).

We now turn to a new discretization scheme which
emerges from a simple mathematical transformation of the
ADE (2). Defining g=a /2D0 it can be verified by direct
differentiation that Eq.(2) may be written as

]tr = D0fegf]x
2sre−gfd − e−gfr]x

2segfdg. s6d

A similar transformation involving exponential functions is
known for Fokker-Planck equations[19]. The simple ADE
given in (2) can indeed be formally interpreted as such an
equation, although the physical origin is quite different. We
will shortly be considering more general ADEs in which the
diffusion coefficient and velocity function can be functions
of the densityr. Clearly then the simple correspondence with
Fokker-Planck equations breaks down, although we are still
able to achieve a transformation of the kind given above. The
crucial feature of Eq.(6) is that spatial derivatives only enter
in the form of a second derivative]x

2 which is straightforward
to discretize. Using the simplest such discretization we im-
mediately have

dri

dt
=

D0

h2 fri+1e
−gsfi+1−fid + ri−1e

−gsfi−1−fid − rise−gsfi−fi+1d

+ e−gsfi−fi−1ddg. s7d

There are a number of points to make concerning this
equation. First, in contrast to the LCD(4), the scalar field
appears in a non-linear fashion, and is sampled at nearest-
neighbor positions. Second, the new equation is of the same
form as a master equation[15,19,20]. Within this analogy
one can think ofri as the probability that a fictitious particle
is located at grid positioni. The transition rate for the par-
ticle to hop from grid pointi to a neighboring pointj is of
the Arrhenius form

Wi→ j = sD0/h
2dexpf− gsfi − f jdg. s8d

Given this formal analogy with a master equation for a prob-
ability function, one immediately sees that Eq.(7) exactly
maintains conservation of the functionr (normalization of
probability) and its non-negativity. Due to this analogy we
hereafter refer to Eq.(7) as the “master equation discretiza-
tion” (MED).

Our numerical work(see Sec. V) shows that the MED is
more accurate than the LCD and other popular discretiza-
tions. To appreciate the underlying reason for this, it is help-
ful to consider the case ofgdf!1 in which case we can
expand the exponential functions in Eq.(7) to first order.
One then finds

dri

dt
=

1

h2Hri+1FD0 −
a

2
sfi+1 − fidG

+ ri−1FD0 +
a

2
sfi − fi−1dG

− riF2D0 −
a

2
s2fi − fi+1 − fi−1dGJ . s9d

Comparison of this form with Eq.(5) gives useful insight
into the potential weakness of the LCD. Namely, it neglects
an important curvature term in the scalar field. In fact, this
omission is directly related to artificial(or “numerical”) dif-
fusion, which is a common failing of other discretization
schemes, most notably, the “upwind” scheme[12,16,17]. The
linear scheme given above in Eq.(9) can of course be re-
garded as one of many possible linear discretizations, but
without the derivation given here one would have noa priori
reason to prefer it over forms such as the LCD, since they
both have non-vanishing second-order errors in space. Con-
tinuing the expansion of the exponential terms in powers of
a yields crucial non-linear corrections to Eq.(9) which have
no analogy within linear discretization schemes. As shall be
seen below, the MED is easily formulated for the
d-dimensional extension of Eq.(2) as well as for a range of
more general ADEs.

III. THE GENERAL CASE

Consider the general ADE ind-dimensions given in Eq.
(1). We shall now proceed to transform this equation into a
form amenable to the MED. In one dimension we shall find
that this is possible for general functionsD andv. In higher
dimensions the vectorial nature of the velocity field will
place a constraint on the transformation.

Let us introduce two scalar functionsfsx ,td and gsx ,td
defined via the relations

D = fg, s10d

v = g ¹ f − f ¹ g. s11d

Then the ADE(1) has the explicit form

]tr = ¹ · ffg ¹ rg − ¹ · frsg ¹ f − f ¹ gdg. s12d

By direct differentiation one can show that this equation may
be rewritten as

]tr = f¹2sgrd − gr¹2f . s13d

Once again, we see that the spatial derivatives appear only as
Laplacians, which allows us to immediately write down a
simple discrete form. Let us define the discrete Laplacian via

¹2Qsxd =
1

h2o
j

8sQj − Qid, s14d

where the sum is over nearest neighborsj of the grid pointi,
which corresponds to the continuum positionx. Then the
MED corresponding to Eq.(13) is
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]tri = o
j

8fWj→i r j − Wi→ j rig, s15d

where the transition rate for “hopping” from sitei to site j is

Wi→ j = f jgi/h
2. s16d

Having formulated the MED in this general manner, let us
examine some particular cases. We stress that once the func-
tions f andg are determined the discrete algorithm is com-
pletely defined via the transition rate given above.

First, we consider one dimension. In this case it is pos-
sible to integrate Eqs.(10) and (11) exactly to find the nec-
essary auxiliary functionsf andg in terms of the physically
relevant diffusion coefficient and velocity. One finds

fsx,td = CÎDsx,tdexpsSd, Ssx,td =
1

2
E
x

dx8
vsx8,td

Dsx8,t8d
,

s17d

with g then given trivially from(10). The transition rate is
easily evaluated from(16) to give

Wi→ j =
ÎDiDj

h2 expf− sSi − Sjdg. s18d

A non-trivial application of this general solution would be
advection-diffusion in the kinetic theory of gases where the
diffusion coefficient is non-constant, and actually depends on
the density asD~1/r [21]. In higher dimensions a general
solution for f andg is not possible. Solvable cases will rely
on special conditions forD andv reminiscent of the potential
conditions for the existence of steady-state solutions to the
multi-variate Fokker-Planck equation[19,20].

For many problems the diffusion coefficient is constant
sD0d and the velocity function is associated with a scalar
potential viav=a¹f. In these cases, the analysis leading to
Eq. (8) is easily generalized tod dimensions and one finds
the discrete equation(15) with

Wi→ j = sD0/h
2dexpf− gsfi − f jdg, s19d

where we remind the reader thatg=a /2D0. As found in one
dimension, this scheme includes important curvature terms,
even within a linear approximation, which are absent in con-
ventional LCD algorithms. Numerical analysis shows such
terms to be essential in regions wheref has maxima or
minima.

The MED scheme encapsulated in Eqs.(15) and(19) can
be used to model more complicated ADEs in which there is
non-linear feedback. An interesting example of this is the
continuum theory of group dynamics, in which a non-linear
and non-local feedback mechanism is imposed via the veloc-
ity potential [22,23]. In particular one has

fsx,td =E ddx8Vsx − x8drsx8,td, s20d

whereV is analogous to a potential, and is responsible for
long-range attraction and short-range repulsion of individu-
als. If V is a Diracd-function thenf~r. Such models are
used to describe density-dependent dispersal in population

dynamics[22] and have recently been shown to arise from
excluded volume effects in models of interacting cellular
systems[24]. A second well-known example is the Keller-
Segel model for chemotactic motion[9]. Here, the potential
f represents the chemoattractant concentration field and is
coupled to the cell density fieldr via

]tf = n¹2f − lf + br, s21d

wheren, l, andb are the diffusion constant for the chemical
field and its rate of degradation and production, respectively.
This equation is easily discretized and the resulting discrete
chemical concentration field may be inserted into the transi-
tion rate(19) allowing a straightforward scheme for integra-
tion of the cell density.

IV. FINE-TUNING THE MED ALGORITHM

From numerical investigations(see the next section) we
have found that the MED is generally far more accurate than
both the LCD and upwind schemes. In regions where the
velocity function has strong spatial variation, the MED does
an excellent job in predicting the correct density even for
grid scales approaching the scale of variation of the velocity.
However, in the “simpler case” when dynamics are domi-
nated by advection in a region of quasi-constant velocity, the
MED fares less well. This problem can be traced back to the
exponential weights yielding, in regions of constant velocity,
an over-estimated drift velocity. In terms of a hopping pro-
cess, the bias in hopping rates between neighboring sites is
proportional to sinhsgdfd, whereas the correct drift velocity
is simply proportional togdf.

We discuss here two straightforward extensions to MED
which alleviate this problem, but also lead to slightly less
accurate algorithms in the “non-trivial” regions where the
velocity is strongly varying. Both extensions amount to a
renormalization of the hopping rates. An ideal algorithm
would be a hybrid, using the original MED and either of the
following extensions in appropriate regions. We will not dis-
cuss such hybrid schemes here since their form will be
strongly dependent on actual applications.

For simplicity let us consider again the one-dimensional
ADE given in Eq. (2). The MED scheme for this case in
given in Eq. (7), where the transition rate from sitei to
neighboring sitej has the explicit form

Wi→ j = sD0/h
2dexpf− gsfi − f jdg. s22d

It is clear from (22) that the effective drift velocity arising
from the bias in hopping rates betweeni and j is

veff = hsWi→ j − Wj→id = s2D0/hdsinhfasf j − fid/2D0g,

s23d

where we have reinstatedg=a /2D0 for clarity. The correct
drift velocity between these two points is simplyasf j

−fid /h which is recovered if the grid scale is small(or else
the velocity potential is slowly varying).

In order to correct the MED algorithm one may either
renormalize the effective diffusion coefficient(which is the
pre-factor of the exponential weight) or else renormalize the
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parameterg which appears in the argument of the exponen-
tial. In the former case one has, on fitting the drift velocity to
its correct value, the effective diffusion coefficient

Deff = D0
adf/2D0

sinhsadf/2D0d
, s24d

which leads to the MED transition weight taking the “Fermi-
Dirac” (FD) form

Wi→ j = SD0

h2 D asfi − f jd/D0

expfasfi − f jd/D0g − 1
. s25d

The alternative is to correct the drift velocity by adjusting
g, which leads to

geff =
1

df
sinh−1Sadf

2D0
D . s26d

Writing the inverse hyperbolic function in terms of a loga-
rithm leads to the MED transition rate taking the “square
root” (SR) form

Wi→ j = sD0/h
2dHF1 +Sasfi − f jd

2D0
D2G1/2

− Sasfi − f jd
2D0

DJ .

s27d

Numerically one finds that the FD form(25) is generally
more accurate than the SR form(27), and that both are su-
perior to the LCD and upwind schemes. As already men-
tioned, the original MED scheme defined by Eq.(22) is the
best of all the schemes described when the velocity field is
strongly varying, and/or during asymptotic relaxation of the
density field to its steady-state.

V. NUMERICAL WORK

We have made a careful numerical analysis of the simple
one-dimensional ADE given in Eq.(2), along with its two-
dimensional extension. Since we wish to gauge the accuracy
of our new scheme, we have compared the MED scheme(7),
and its variants[the MED(FD) given in (25), the MED(SR)
given in (27), and the linearized MED, denoted by MED-
(LIN ), given in(9)], with both the LCD and upwind schemes
[12]. In one dimension we use a static velocity potential
given by fsxd=f1+coss2pnx/Ldg /2 with n=16 and L
=12.8. The initial density function is taken to be uniform in
the regionxP s−3,3d and zero otherwise. The density is nor-
malized to unity and periodic boundary conditions are en-
forced. This set-up provides a challenging test of all the
schemes since the velocity field is a strongly varying func-
tion of position. Furthermore, we challenge the methods by
using the parameter valuesD0=1.0 anda=5.0 (Fig. 1) and
a=20.0 (Fig. 2), which correspond to moderate to high grid
Peclet numbers[1] at the grid scales of interest. Here, the
largest Peclet numbers are approximately given by 2ah and
so vary between 0.25 and 8 for the data shown in Figs. 1 and
2. The dynamics consists of a rapid transient phase where the
density field adapts to the periodic structure of the velocity
field, followed by a slower relaxation toward the steady state.
Thus, the numerical analysis probes each scheme’s ability to

track rapid advective motion and diffusive relaxation around
maxima and minima of the velocity field.

In order to assess the accuracy of the methods we first run
all schemes at a very small grid size ofh=0.006 25, using an
explicit temporal scheme withdt=10−6. Very good agree-
ment is found among all the schemes and the solution is
denoted “exact.” We then run all the schemes at larger grid
scales usingdt=10−4, and dynamically compare the approxi-
mate solutions with the exact one. This is gauged using the
relative error, which is defined via

Estd =

S
i
fristd − ri,exactstdg2

S
i
ri,exactstd2 . s28d

Note thatdt is chosen small enough such that any differences
between our first-order temporal discretization for LCD and
second-order schemes(in the temporal dimension) such as
Crank-Nicholson or Lax-Wendroff are negligible. Figures
1(a)–1(e) showEstd for grid scalesh=0.025, 0.05, 0.1, 0.2,
and 0.4, respectively, fora=5.0. The entire dynamical evo-
lution up to the steady state is shown. In the first four panels
we clearly see that the MED and its(nonlinear) variants give
a relative error approximately 10 times less than the LCD
and UW schemes.[Note UW does not appear in Fig. 1(a)
since its error is too large to be usefully included.] The rela-
tive errors of all the schemes increases roughly by a factor of
10 as the grid scale is doubled. Figure 1(e) shows the break-
down of all the schemes at the scaleh=0.4 which is compa-
rable to the period of the velocity field. By “breakdown” we
mean a relative error of 10% or more. To give an idea of the
spatial form of the density field near the steady state we
show in Fig. 1(f) the exact density profile in a peripheral
region, along with the LCD and MED(FD) at a grid scale of
h=0.2 for comparison. Note the LCD fails to capture the
magnitude of the maximum density, and also becomes nega-
tive at some grid points.

In a similar fashion, Figs. 2(a)–2(d) show Estd for h
=0.025, 0.05, 0.1, and 0.2, respectively, fora=20.0. As be-
fore the non-linear MED schemes perform far better than the
LCD and UW, meaning the relative error is roughly 10 times
smaller for a given grid scale. Note also that the MED(FD)
and MED(SR) algorithms perform better than MED during
the transient period, as expected. All schemes break down for
h=0.2. In Fig. 2(e) we show the exact density profile close to
the steady state, compared with the MED and LCD schemes
for h=0.1. Again, the LCD shows negative values and fails
in the vicinity of the density peaks. Figure 2(f) is the same
except the UW scheme is compared to the MED. The UW
scheme is designed to give non-negative densities, but has
high (artificial) “numerical diffusion” which inflate the width
of the density peaks.

We have performed an exactly analogous numerical ex-
amination in two dimensions(2D). We integrated the 2D
generalization of Eq.(2) using the potentialfsx,yd=f1
+coss2pnx/Ldgf1+coss2pny/Ldg /4 with n=16 andL=12.8.
We takeD0=1.0 anda=10.0. The initial density function is
uniform in a disk of radius 3.0 and zero otherwise, and again
normalized to unity. The “exact” density profile is evaluated
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FIG. 1. Data from numerical integration of Eq.(2) using various schemes in one dimension, withD0=1.0 anda=5.0. The particular form
of the velocity potential and the initial density profile are described in Sec. V. The time step isdt=10−4. (a), (b), (c), (d), and(e): The relative
error (28) as a function of time for grid scales ofh=0.025, 0.05, 0.1, 0.2, and 0.4, respectively. The methods used are upwind(UW), LCD
(4), linearized MED(9), MED (7), “Fermi-Dirac” version of MED(25), and “square-root” version of MED(27). (f) Comparison of the exact
density profile in the peripheral regionxP s2,3.6d with both the MED(FD) scheme and the LCD scheme at timet=0.1 usingh=0.2. In Figs.
1–3, time is measured in units ofdt, space in units ofh, and the density in dimensionless units.
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using h=0.0125 anddt=0.25310−4. The two-dimensional
extensions of all six schemes are integrated for grid scales of
h=0.025, 0.05, 0.1, and 0.2 usingdt=10−4. The relative error
Estd for these cases is shown in Figs. 3(a)–3(d), for a time

period encompassing the initial rapid adaptation to the po-
tential followed by the early stages of relaxation to the
steady-state. As with one dimension, the MED and its(non-
linear) variants perform far better than the LCD and UW,

FIG. 2. Same as Fig. 1, but witha=20.0. (a), (b), (c), and (d): The relative error(28) as a function of time for grid scales ofh
=0.025, 0.05, 0.1, and 0.2, respectively.(e) Comparison of the exact density profile in the peripheral regionxP s2,3.6d with both the MED
scheme and the LCD scheme at timet=0.02 usingh=0.1. (f) The same as(e) but compares the exact profile with both MED and UW.
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FIG. 3. Data from numerical integration of the two-dimensional generalization of Eq.(2) using various schemes, withD0=1.0 anda
=10.0. The particular form of the velocity potential and the initial density profile are described in Sec. V. The time step isdt=10−4. (a), (b),
(c), and(d): The relative error(28) as a function of time for grid scales ofh=0.025, 0.05, 0.1, and 0.2, respectively. The methods used are
two-dimensional generalizations of upwind(UW), LCD (4), linearized MED(9), MED (7), “Fermi-Dirac” version of MED(25), and
“square-root” version of MED(27). (e) Comparison of the exact density profile along a cutsy=0d in the peripheral regionxP s2,3.6d with
both the MED scheme and the LCD scheme at timet=0.01 usingh=0.05.(f) The same as(e) except that a larger grid scale ofh=0.1 is used.
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with the pure MED scheme performing best at later times.
All schemes break down forh=0.2. Direct comparison of the
exact density profile, MED, and LCD is given in Figs. 3(e)
and 3(f), for h=0.05 andh=0.1, respectively, along a one-
dimensional cutsy=0d in a peripheral region of the density.
The MED shows excellent agreement, especially in the vi-
cinity of the density peaks. The LCD fails in the vicinity of
the density peaks as expected.

From this and similar numerical work we have concluded
that the MED and its(non-linear) extensions are superior
spatial discretization schemes compared to the LCD and up-
wind schemes. The MED works especially well in regions of
large variation in the velocity potential. Generally speaking,
for a given error tolerance, the MED and variants allow one
to use grid scales at least two times larger than traditional
schemes, which translates into a saving ofat leasta factor of
4 and 8 in computational cost for two- and three-dimensional
numerical analyses.

VI. DISCUSSION AND CONCLUSIONS

We end with some remarks on the non-linear transition
rates of the MED. In most applications the ADEs represent
processes for which there is no underlying lattice(e.g., cos-
mic ray diffusion [3] or chemotactically moving cells[9]).
When one discretizes the continuum ADE one must therefore
not regard the lattice version as “more fundamental” or
“more microscopic.” It is simply a mathematical analog of
the original equation and identical in the limit of the lattice
spacing being taken to zero. This is a different situation to
that found for many models arising from solid state physics
in which there is an underlying crystal lattice, and for which
the discrete equation can often be regarded as more funda-
mental(or, at least, more microscopic) than continuum mod-
els. Although the hopping process encapsulated by the MED
cannot be viewed as the underlying microscopic dynamics, it
is interesting that ADEs can be accurately modeled by a pro-
cess in which diffusion and advection are non-linearly com-
bined in Arrhenius transition rates. Figure 4 summarizes our
understanding of the algorithmic connections between ADE
and the MED discretization, in which a given ADE typically
arises from a mean-field approximation of a microscopic sto-
chastic process which is not constrained by a lattice.

Pragmatically one wishes to impose a “large” lattice scale
for numerical efficiency, while avoiding the loss of accuracy.
Algorithms which remain accurate for larger lattice scales

yield great computational speed-up in higher dimensions,
since the number of required grid points(and hence com-
puter operations) scales ash−d. We find that our new scheme
typically allows grid scales between two and four times
larger than traditional schemes, which in three dimensions
allows a potential speed-up in computation of one or two
orders of magnitude. Naturally, our improved spatial discreti-
zations can be used in more advanced algorithms which use
implicit temporal methods and/or adaptive spatial grids.

In conclusion we have shown that a wide class of
advection-diffusion equations can be exactly rewritten in a
form which immediately allows a direct and simple spatial
discretization in all dimensions. Our new discrete forms con-
tain important non-linear terms, which when linearized are
seen to be related to the curvature of the velocity potential,
such terms being absent in commonly used discretization
schemes. We have shown explicitly that these curvature ef-
fects are essential for accurate integration of ADEs, both in
one and two dimensions, and allow simple algorithms to be
constructed which are accurate for grid scales up to the size
of spatial variation in the velocity field. We estimate that our
new algorithm may allow a speed-up of ADE computation
by factors of 10 or more in three dimensions due to the
increased grid scale one can impose. The fact that ADE can
be recast as master equations also yields interesting physical
insight into their dynamics—namely that at mesoscopic
scales the processes of diffusion and advection may be mod-
eled as a non-linear combination within Arrhenius-like tran-
sition rates.
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