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Accurate discretization of advection-diffusion equations
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We present an exact mathematical transformation which converts a wide class of advection-diffusion equa-
tions into a form allowing simple and direct spatial discretization in all dimensions, and thus the construction
of accurate and more efficient numerical algorithms. These discretized forms can also be viewed as master
equations which provide an alternative mesoscopic interpretation of advection-diffusion processes in terms of
diffusion with spatially varying hopping rates.
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I. INTRODUCTION ceived somewhat less attention with two spatial discretiza-
tion schemegand their immediate variantsommonly in

Advection-diffusion equation$ADES) describe a broad i .
class of processes in the natural sciences. As their name i yse: these are the simple Taylor expansjarl9 and the

lies, they provide a continuufmacroscopigrepresentation upwind” scheme(16,17. One of the main results of this
gf S ,sterXspwhose underlving d namicspcomgines Browniam 2Per is the derivation of a new discretization scheme which
y o . ying dy LT is physically appealing, simple to apply in all dimensions,
motion (diffusion) with some form of deterministic driftad- :
: . : and more accurate than those currently in use.
vection. In this paper we shall consider ADEs of the general
form
II. A SIMPLE EXAMPLE

dp=V-DVp=V -pv. (1)
: - ; : «nar. 1O begin, let us present the key idea in the context of a
The field p typically describes the number density of “par simple ADE, namely, a one-dimensional system with a ve-

ticles” which, depending on the application, can range fro . ) : : o
electrons in a plasma, to chemical molecules advectedni]'QC'ty funqtion proportional to the spa’ual derivative of a sca-
' ar potential¢(x,t). Thus, we consider

solution, to colloidal particles, to biological cells moving
along chemical gradients. In principle the diffusion coeffi- dip = Dodip =~ ady(pixp), 2
cientD(x,t) and the velocity field/(x,t) can depend on the
density field p. An idea of the ubiquity of ADEs can be WhereDgy anda are constants.
gauged from their diverse applications to traditional physics, Most numerical algorithms designed to integrate an equa-
soft matter systems, and biology. A small subset of example#on such ag?2) treat the diffusion and advection terms sepa-
are magnetic fusion p|asma‘s]’ cosmic ray Streamin&,s], I’ately[l,lZ,l?_[. The difficulties arise in f|nd|ng a discretiza-
electrons in weakly ionized gasp$], microemulsions under tion for the latter term. In doing so, two fundamental
shear flow[5], chemical kinetics in driven systeni$,7], properties of the equation must be exactly maintained. These
hydrodynamics and chemotaxis of bacterial colori@®],  are the non-negativity gb and its spatial conservation:
phase field dynamics in directional solidificatiptO], and a
wide array of tracer diffusion problenmr example[11]). f dxp(x,t) = const. (3)

It is generally not possible to analytically solve ADEs,

especially sinc_e they ofte_n appear within sets of iion-linear As an illustration, let us write down a common spatial
coupled equations. For this reason, great emphasis has begg retization using simple Taylor expansion, which is used
placed on numerical integration methods, typically based opqih for explicit Euler schemegL8], and as the basis for
finite differences. It has been found that the advection termy,qre advanced implicit algorithmgl2,15,16. We replace
despite its apparent simplicity, is extremely tiqubles_ome tQhe continuous functiop(x,t) by a set of functiondp;(t)}
handle[12]. There are two major challengestability, which — yefineq on a regular grid with lattice spacingThe equation

can be improved using a range of implicit methods, andl ¢ mqtion for p, is written using centered spatial derivatives:
curacy, which is a delicate issue, requiring the “best pos-

sible” form of spatial discretization. Regarding the issue of dp; Dy @

stability, many schemes are in use, such as the Crank- a:ﬁ(pi+1+pi—l_Zpi)_ﬁ[piﬂ(‘ﬁiﬂ_@)
Nicholson/ADI and fractional step methofs2,13, and the

Lax-Wendroff method[14]. The issue of accuracy has re- - pi-a(¢i — i) ]. (4)

It is noteworthy that this simple scheme requires knowledge

of the scalar field¢ at next-nearest neighbor grid points
*Email address: ramon.grima@asu.edu rather than neighboring grid points. For future reference we
"Email address: timothy.newman@asu.edu rewrite this discrete equation in the following manner:
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do; 1 a dp; 1 @
d_tl = F{Pnl[Do‘ Z(¢i+2 - ¢i):| d_tl = F{Pnl[Do‘ E(¢i+1 - ¢i):|
o o
+ pi-1| Do+ Z(¢i = ¢i-2) | = pi[2Dq] {, (5 +pi-1| Do+ E(¢i - ¢i-1)
which we shall hereafter refer to as the “linear centered dis- - p{ZDO— g(Zqﬁi = dis1— ¢i_1)} } 9
cretization”(LCD) (and which resembles the backward Euler 2
scheme used for simple advection probleftig]). Comparison of this form with Eq(5) gives useful insight

We now turn to a new discretization scheme whichj,i, the potential weakness of the LCD. Namely, it neglects
emerges from a S'mf’le mathematical transformation of the,, jmportant curvature term in the scalar field. In fact, this
ADE (2). Defining y=a/2D, it can be verified by direct mission is directly related to artificigbr “numerical’) dif-

differentiation that Eq(2) may be written as fusion, which is a common failing of other discretization
schemes, most notably, the “upwind” schefib®,16,17. The
dp = D[ (pe %) — e Y pfi(e7?)]. (6)  linear scheme given above in E@) can of course be re-

garded as one of many possible linear discretizations, but
A similar transformation involving exponential functions is without the derivation given here one would haveangriori
known for Fokker-Planck equatiorjd9]. The simple ADE reason to prefer it over forms such as the LCD, since they
given in (2) can indeed be formally interpreted as such anboth have non-vanishing second-order errors in space. Con-
equation, although the physical origin is quite different. Wetinuing the expansion of the exponential terms in powers of
will shortly be considering more general ADEs in which the « yields crucial non-linear corrections to E§) which have
diffusion coefficient and velocity function can be functions no analogy within linear discretization schemes. As shall be
of the densityp. Clearly then the simple correspondence withseen below, the MED is easily formulated for the
Fokker-Planck equations breaks down, although we are stili-dimensional extension of E¢R) as well as for a range of
able to achieve a transformation of the kind given above. Thenore general ADEs.
crucial feature of Eq(6) is that spatial derivatives only enter
in the form of a second derivativ& which is straightforward

. . . . - 2 . IIl. THE GENERAL CASE
to discretize. Using the simplest such discretization we im-

mediately have Consider the general ADE id-dimensions given in Eq.
(1). We shall now proceed to transform this equation into a
dp; Dy form amenable to the MED. In one dimension we shall find

[pio1€ "W + py_y @I — py (@797 d1ed) that this is possible for general functioBsanduv. In higher

dt  h? _ : _ ! .
dimensions the vectorial nature of the velocity field will
+e Mimdi-0)], (7)  place a constraint on the transformation.
Let us introduce two scalar functiorféx,t) and g(x,t)

There are a number of points to make concerning this, _ . .
defined via the relations

equation. First, in contrast to the LC@), the scalar field
appears in a non-linear fashion, and is sampled at nearest- D=fg (10)
neighbor positions. Second, the new equation is of the same '

form as a master equatidi5,19,2Q. Within this analogy

one can think ofy; as the probability that a fictitious particle v=gVf-fVg. 1)
is located at grid position. The transition rate for the par- 1o the ADE(1) has the explicit form

ticle to hop from grid poini to a neighboring poinf is of

the Arrhenius form ap=V -[fgVp]-V -[p(gVF-fVg)]. (12)

Wi_; = (Dy/hDexd - (e - ¢)]. (gy By direct differentiation one can show that this equation may
be rewritten as

Given this formal analogy with a master equation for a prob- — £y _ 2
ability function, one immediately sees that E@) exactly o = 1V(gp) = Gp V7. (13
maintains conservation of the functign(normalization of  Once again, we see that the spatial derivatives appear only as
probability) and its non-negativity. Due to this analogy we Laplacians, which allows us to immediately write down a
hereafter refer to Eq.7) as the “master equation discretiza- simple discrete form. Let us define the discrete Laplacian via
tion” (MED). .

Our numerical work'see Sec. Yshows that the MED is 2 _iN A
more accurate than the LCD and other popular discretiza- V) = hzz Q-Q), (14)
tions. To appreciate the underlying reason for this, it is help-
ful to consider the case ofdp<1 in which case we can where the sum is over nearest neighbjood the grid pointi,
expand the exponential functions in E@) to first order.  which corresponds to the continuum positign Then the
One then finds MED corresponding to Eq.13) is
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ap =y TW. _; pi= Wi pil, (15) dynamics[22] and have re_cently been shown to_ arise from
i excluded volume effects in models of interacting cellular
. . - . o systems[24]. A second well-known example is the Keller-
where the transition rate for “hopping” from sitéo sitej i Segel model for chemotactic motigf]. Here, the potential
W,_; = f,g/h?. (16) ¢ represents the chemoattractant concentration field and is

coupled to the cell density field via
Having formulated the MED in this general manner, let us

examine some particular cases. We stress that once the func- dp=1V2h =N+ fp, (21

tions f and.g are.determined. Fhe discrgte algorithm is COM-\wherew, \, andg are the diffusion constant for the chemical

plelt:e_ly defined V'%the tranj_ltlon rgte gllveﬂ_above. o field and its rate of degradation and production, respectively.
ol Irst, we consider one |(;nen3|on. T t |sf_c?jseh It IS POS—hig equation is easily discretized and the resulting discrete

sible to integrate Eqg10) and(11) exactly to find the nec- .o mica) concentration field may be inserted into the transi-

essary au?(iliar_y functio.n$ andg in terms of the PhySica”y tion rate(19) allowing a straightforward scheme for integra-
relevant diffusion coefficient and velocity. One finds tion of the cell density.

X
= 1 L u(x',t)
f(x,t) = CVD(x,t)exp(S), S(x,t) 2fdx DOLt)
(17) From numerical investigationgsee the next sectigrwe
have found that the MED is generally far more accurate than
with g then given trivially from(10). The transition rate is both the LCD and upwind schemes. In regions where the

IV. FINE-TUNING THE MED ALGORITHM

easily evaluated fronil6) to give velocity function has strong spatial variation, the MED does
= an excellent job in predicting the correct density even for

= @l exd-(S-9)]. (18) grid scales approaching the scale of variation of the velocity.

h However, in the “simpler case” when dynamics are domi-

nated by advection in a region of quasi-constant velocity, the

ED fares less well. This problem can be traced back to the
ﬁxponential weights yielding, in regions of constant velocity,
an over-estimated drift velocity. In terms of a hopping pro-
solution forf andg is not possible. Solvable cases will rely CEss, the bias in_ hopping rates between neighb_oring si_tes is
on special conditions fdD andv reminiscent of the potential propornonal to sinfyd¢), whereas the correct drift velocity

conditions for the existence of steady-state solutions to th& SIMPly proportional toyse. _
multi-variate Fokker-Planck equatida9,24. We discuss here two straightforward extensions to MED

For many problems the diffusion coefficient is constantWhich alleviate this problem, but also lead to slightly less

(Do) and the velocity function is associated with a scalardccurate algorithms in the “non-trivial” regions where the

potential viav=a'V ¢. In these cases, the analysis leading tovelocity is strongly varying. Both extensions amount to a

Eq. (8) is easily generalized td dimensions and one finds
the discrete equatiofl5) with

A non-trivial application of this general solution would be
advection-diffusion in the kinetic theory of gases where th
diffusion coefficient is non-constant, and actually depends o
the density aPD o« 1/p [21]. In higher dimensions a general

renormalization of the hopping rates. An ideal algorithm
would be a hybrid, using the original MED and either of the
following extensions in appropriate regions. We will not dis-
V\/Hj:(DO/hz)exp{— i — )], (19 cuss such hybrid schemes here since their form will be

. . strongly dependent on actual applications.
where we remind the reader thpt «/2D,. As found in one N . . L .
dimension, this scheme includes important curvature terms For _S|mpl'|C|ty let us consider again the one dmenspnal
- ; S . : ADE given in Eqg.(2). The MED scheme for this case in
even within a linear approximation, which are absent in con- iven in Eq. (7), where the transition rate from siieto
ventional LCD algorithms. Numerical analysis shows suchgei hborinq.sit ! has the explicit form
terms to be essential in regions whefehas maxima or g g sttg P
minima. _ Wi_; = (Do/h?)exil- A~ ). (22)
The MED scheme encapsulated in E¢b) and(19) can ) , . , .
be used to model more complicated ADEs in which there idt IS clear from(22) that the effective drift velocity arising
non-linear feedback. An interesting example of this is the"™m the bias in hopping rates betweland] is
continuum theory of group dynamicg, qn which a non-linear Dets = (W _; =W, _;) = (2Dg/h)sint a(¢h; — ¢b;)/2Dy],
and non-local feedback mechanism is imposed via the veloc-
ity potential[22,23. In particular one has (23
where we have reinstateg= «/ 2D, for clarity. The correct
P(X,t) :f di%'V(x = x")p(x',1), (20)  drift velocity between these two points is simpky(¢;
—¢;)/h which is recovered if the grid scale is smédir else
whereV is analogous to a potential, and is responsible fotthe velocity potential is slowly varying
long-range attraction and short-range repulsion of individu- In order to correct the MED algorithm one may either
als. If V is a Dirac &-function then¢=p. Such models are renormalize the effective diffusion coefficie(which is the
used to describe density-dependent dispersal in populatigpre-factor of the exponential weightr else renormalize the
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parametery which appears in the argument of the exponen-rack rapid advective motion and diffusive relaxation around
tial. In the former case one has, on fitting the drift velocity tomaxima and minima of the velocity field.

its correct value, the effective diffusion coefficient In order to assess the accuracy of the methods we first run
all schemes at a very small grid sizelof 0.006 25, using an
off = OM, (24) explicit temporal scheme witt#t=10"°. Very good agree-

sinh(ad¢/2D) ment is found among all the schemes and the solution is

denoted “exact.” We then run all the schemes at larger grid
scales usingt=10"*, and dynamically compare the approxi-
mate solutions with the exact one. This is gauged using the

which leads to the MED transition weight taking the “Fermi-
Dirac” (FD) form

W (Do> a(¢ = ¢;)IDy 25 relative error, which is defined via
=17\ 2 b -1
h eXF{a’((ﬁ, ¢J)/D0] 1 Z[Pi(t) - Pi,exac(t)]2
The alternative is to correct the drift velocity by adjusting E(t) = : 5 (28)
v, which leads to Eipi,exac{t)
Yett = isinh‘l<@>. (26) Note thatét is chosen small enough such that any differences
op 2D, between our first-order temporal discretization for LCD and

second-order schemém the temporal dimensignsuch as
Crank-Nicholson or Lax-Wendroff are negligible. Figures
1(a-1(e) showE(t) for grid scalesh=0.025, 0.05, 0.1, 0.2,
and 0.4, respectively, fax=5.0. The entire dynamical evo-

_ 2\ 212 o - . .
W= (Dolhz) 1+ ( a( o, ¢)> B (a(qﬁl ¢)> . lution up to the steady state is shpwn. _In the f|r§t four panels
2D, 2D, we clearly see that the MED and itsonlineay variants give

Writing the inverse hyperbolic function in terms of a loga-
rithm leads to the MED transition rate taking the “square
root” (SR) form

5 a relative error approximately 10 times less than the LCD
(27) and UW schemegNote UW does not appear in Fig(a

Numerically one finds that the FD fori25) is generally ~ since its error is too large to be usefully includetihe rela-
more accurate than the SR fori®7), and that both are su- tive errors of all the schemes increases roughly by a factor of
perior to the LCD and upwind schemes. As already men10 as the grid scale is doubled. Figui@)lshows the break-
tioned, the original MED scheme defined by EB2) is the  down of all the schemes at the scake0.4 which is compa-
best of all the schemes described when the velocity field isable to the period of the velocity field. By “breakdown” we

strongly varying, and/or during asymptotic relaxation of themean a relative error of 10% or more. To give an idea of the
density field to its steady-state. spatial form of the density field near the steady state we

show in Fig. 1f) the exact density profile in a peripheral
region, along with the LCD and MEIFD) at a grid scale of
h=0.2 for comparison. Note the LCD fails to capture the
We have made a careful numerical analysis of the simplenagnitude of the maximum density, and also becomes nega-
one-dimensional ADE given in Eq2), along with its two- tive at some grid points.
dimensional extension. Since we wish to gauge the accuracy In a similar fashion, Figs. (2)-2(d) show E(t) for h
of our new scheme, we have compared the MED sch@me =0.025, 0.05, 0.1, and 0.2, respectively, tor20.0. As be-
and its variant§the MED(FD) given in (25), the MEDSR)  fore the non-linear MED schemes perform far better than the
given in (27), and the linearized MED, denoted by MED- LCD and UW, meaning the relative error is roughly 10 times
(LIN), given in(9)], with both the LCD and upwind schemes smaller for a given grid scale. Note also that the MED)
[12]. In one dimension we use a static velocity potentialand MEDO(SR) algorithms perform better than MED during
given by ¢(x)=[1+cog2mnx/L)]/2 with n=16 and L the transient period, as expected. All schemes break down for
=12.8. The initial density function is taken to be uniform in h=0.2. In Fig. 2e) we show the exact density profile close to
the regionx e (-3, 3) and zero otherwise. The density is nor- the steady state, compared with the MED and LCD schemes
malized to unity and periodic boundary conditions are enfor h=0.1. Again, the LCD shows negative values and fails
forced. This set-up provides a challenging test of all thein the vicinity of the density peaks. Figurgf2is the same
schemes since the velocity field is a strongly varying func-except the UW scheme is compared to the MED. The UW
tion of position. Furthermore, we challenge the methods byscheme is designed to give non-negative densities, but has
using the parameter valu@,=1.0 anda=5.0 (Fig. 1) and  high (artificial) “numerical diffusion” which inflate the width
«@=20.0(Fig. 2), which correspond to moderate to high grid of the density peaks.
Peclet number$l] at the grid scales of interest. Here, the We have performed an exactly analogous numerical ex-
largest Peclet numbers are approximately given bz @nd  amination in two dimensiong2D). We integrated the 2D
so vary between 0.25 and 8 for the data shown in Figs. 1 angeneralization of Eq.(2) using the potentialé(x,y)=[1
2. The dynamics consists of a rapid transient phase where thecog2mnx/L)][1+cog27ny/L)]/4 withn=16 andL=12.8.
density field adapts to the periodic structure of the velocityWe takeDy=1.0 anda=10.0. The initial density function is
field, followed by a slower relaxation toward the steady stateuniform in a disk of radius 3.0 and zero otherwise, and again
Thus, the numerical analysis probes each scheme’s ability toormalized to unity. The “exact” density profile is evaluated

V. NUMERICAL WORK
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FIG. 1. Data from numerical integration of E@) using various schemes in one dimension, vilfx 1.0 anda=5.0. The particular form
of the velocity potential and the initial density profile are described in Sec. V. The time siepli§ 2. (a), (b), (), (d), and(e): The relative
error (28) as a function of time for grid scales bf0.025, 0.05, 0.1, 0.2, and 0.4, respectively. The methods used are ugg LCD
(4), linearized MED(9), MED (7), “Fermi-Dirac” version of MED(25), and “square-root” version of MER7). (f) Comparison of the exact
density profile in the peripheral regiore (2, 3.6 with both the MEQFD) scheme and the LCD scheme at titwed.1 usingh=0.2. In Figs.

1-3, time is measured in units &, space in units oh, and the density in dimensionless units
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FIG. 2. Same as Fig. 1, but with=20.0. (a), (b), (c), and (d): The relative error28) as a function of time for grid scales &f
=0.025, 0.05, 0.1, and 0.2, respectivek). Comparison of the exact density profile in the peripheral regieri2,3.6 with both the MED
scheme and the LCD scheme at titwe0.02 usingh=0.1. (f) The same a¢e) but compares the exact profile with both MED and UW.

using h=0.0125 andét=0.25x 10*. The two-dimensional period encompassing the initial rapid adaptation to the po-
extensions of all six schemes are integrated for grid scales @éntial followed by the early stages of relaxation to the
h=0.025, 0.05, 0.1, and 0.2 usidF=10"*. The relative error  steady-state. As with one dimension, the MED andritsn-

E(t) for these cases is shown in Figgag-3(d), for a time linearn variants perform far better than the LCD and UW,
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FIG. 3. Data from numerical integration of the two-dimensional generalization ofBasing various schemes, wifby=1.0 anda
=10.0. The particular form of the velocity potential and the initial density profile are described in Sec. V. The timesstel0is. (a), (b),

(c), and(d): The relative errok28) as a function of time for grid scales bf0.025, 0.05, 0.1, and 0.2, respectively. The methods used are

two-dimensional generalizations of upwifdW), LCD (4), linearized MED(9), MED (7), “Fermi-Dirac” version of MED(25), and
“square-root” version of ME27). (e) Comparison of the exact density profile along a @ut0) in the peripheral regiom  (2,3.6 with
both the MED scheme and the LCD scheme at tim@.01 usinch=0.05.(f) The same age) except that a larger grid scalelof0.1 is used.
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with the pure MED scheme performing best at later times. microscopic dynamics| MFA [continuum ADE

All schemes break down fdr=0.2. Direct comparison of the (off lattice) > p(x.D)

exact density profile, MED, and LCD is given in FiggeB A

and 3f), for h=0.05 andh=0.1, respectively, along a one- : h—0

dimensional cuty=0) in a peripheral region of the density. : : [ L]

The MED shows excellent agreement, especially in the vi- lattice model with 1| discrete ADE
Arrhenius weights {(pi-h)

cinity of the density peaks. The LCD fails in the vicinity of
the density peaks as expected.
From this and similar numerical work we have concluded

FIG. 4. A schematic diagram summarizing the relationships be-

that the MED and it i tensi . “tween various descriptions of advection-diffusion processes. The
a . I%' . an. ! S(nr?n' ineay ex eni;ons har?_csgperlgr MED is a useful mesoscopic description in terms of Arrhenius hop-
spatial discretization schemes compared to the an uQ)"lng rates, rather than a reflection of the underlying dynamics.

wind schemes. The MED works especially well in regions of

large variation in the velocity potential. Generally speaking,

for a given error tolerance, the MED and variants allow one/1€d gI:eat corgputa]lctlonall sp&eed;jup in h'%hﬁr dimensions,
to use grid scales at least two times larger than traditiona}"Ce the number cf req;_'gewgrf'. dpor:mm ence (k:‘om—
schemes, which translates into a savingleasta factor of ~ PUter operationsscales a$i™™. We find that our new scheme

4 and 8 in computational cost for two- and three-dimensionafYPically allows grid scales between two and four times
numerical analyses. arger than traditional schemes, which in three dimensions

allows a potential speed-up in computation of one or two
orders of magnitude. Naturally, our improved spatial discreti-
V1. DISCUSSION AND CONCLUSIONS zations can be used in more advanced algorithms which use
We end with some remarks on the non-linear transition'mpIICIt tempo_ral methods and/or adaptive spa_tlal grids.
rates of the MED. In most applications the ADEs represent In °.°“°'L_’S'°f.‘ we ha\_/e shown that a wide .Class_ of
processes for which there is no underlying lattieey., cos- advect|op-d|ffu3|on_equatlons can pe exactly rewrltten n a
mic ray diffusion[3] or chemotactically moving cell§9)). fqrm wh|ch mmedla_tely a!lows a direct and simple spatial
When one discretizes the continuum ADE one must therefor?'scret'zat'on in all dimensions. Our new discrete forms con-
not regard the lattice version as “more fundamental” or ain important non-linear terms, which when linearized are
“more microscopic.” It is simply a mathematical analog of seen to be related to the curvature of the velocity potential,

the original equation and identical in the limit of the lattice such terms being absent in commonly used discretization

spacing being taken to zero. This is a different situation toschemes. We have shown explicitly that these curvature ef-

that found for many models arising from solid state physicsfects are esser_1tia| fo_r accurate integrgtion of AD.ES’ both in
in which there is an underlying crystal lattice, and for which one and two dlmen5|ons, and allow s!mple algorithms to t_>e
the discrete equation can often be regarded as more fundﬁgnStquted V.Vh.'Ch are accurate fqr grid scale_s up to the size
mental(or, at least, more microscopithan continuum mod- of spatial variation in the velocity field. We estimate that our
els. Although the hopping process encapsulated by the ME[geV\; altgorlthrf‘nlrgay allow a spt)ﬁed-ug of ADE codmpu:antohn
cannot be viewed as the underlying microscopic dynamics, i y tactors o or more 1n three dimensions due 1o the

is interesting that ADEs can be accurately modeled by a prol_ncreased grid scale one can impose. The fact that ADE can

cess in which diffusion and advection are non-linearly com—.be recast as master equa_tions also yields interesting phys_ical
bined in Arrhenius transition rates. Figure 4 summarizes oums'?ht trl]nto their dynz?n;y;:fs—_nametljy (';hat t_at mesoscoplcd
understanding of the algorithmic connections between ADESCAIES e processes of diliusion and advection may be mod-
and the MED discretization, in which a given ADE typically e]gd as a non-linear combination within Arrhenius-like tran-
arises from a mean-field approximation of a microscopic stoSttion rates.
chastic process which is not constrained by a lattice.
Pragmatically one wishes to impose a “large” lattice scale
for numerical efficiency, while avoiding the loss of accuracy. The authors gratefully acknowledge partial support from
Algorithms which remain accurate for larger lattice scalesNSF Award No. DEB-0328267.
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